Charge azimuthal correlations at RHIC and LHC

Guo-Liang Ma

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

This work is in collaboration with Dr. Bin Zhang (ASU).

Outline

- Introduction
- Charge correlations at top RHIC energy
- Charge correlations at low RHIC energies
- Charge correlations at LHC energy
- Outlook & Summary

Parity Violation in Weak Interactions

C.S. Wu, 1912-1997

- Lee and Yang won Nobel Prize in 1957, because of prediction about parity violation in weak interactions and confirmation by Wu's Cobalt experiment.
- How about parity conservation in strong interactions?

PV in SI: Chiral Magnetic Effect

DE Kharzeev

Red arrow - momentum; blue arrow - spin; In the absence of topological charge no asymmetry between left and right (fig.1); the fluctuation of topological charge (fig.2) in the presence of magnetic field induces electric current (fig.3)

•Initial fluctuations of topological charge in QCD vacuum → P and CP odd metastable domains → Charge separation in the direction of magnetic field → CME indicates that parity can be locally violated in strong interactions.

Where is CME?

CME requirements:

- (1) strong magnetic field \square
- (2) fluctuating QCD source \(\sqrt{} \)

How to observe CME experimentally? Two obeservbles so far,

Exp. observable I: charge azimuthal correlation

$$a^k a^m = \langle \sum_{ij} \sin(\varphi_i^k - \Psi_R) \sin(\varphi_j^m - \Psi_R) \rangle$$

CME expects: $a^+a^+ = a^-a^- > 0$; $a^+a^- < 0$

Exp. results about charge azimuthal correlation

- Same-charge is negative and opposite-charge is positive, which is consistent with CME expectations.
- Bigger amplitude in samecharge correlations compared to opposite-charge.
- Large difference in samecharge vs opposite-charge correlations in the data compared to models.

Exp. observable II: charge asymmetry correlation

% Most Central

Chiral magnetic effect:

LPV + large magnetic field
 →charge separation along the
 system angular momentum.
 Kharzeev et al. NPA 803 (2008) 227.

CME effects in UD. LR is null-reference. CME expectations:

- A_{+UD} and A_{-UD} are anti-correlated
 → ⟨A₊A₋⟩_{UD} < ⟨A₊A₋⟩_{LR}
- Additional dynamical fluctuation broadens A_{±UD} distributions
 → ⟨A₊²⟩_{UD} > ⟨A₊²⟩_{LR}

Exp. results about charge asymmetry correlation

Oppo-sign aligned; (A₊A₋)_{UD} > (A₊A₋)_{LR}
 CME expects: (A₊A₋)_{UD} < (A₊A₋)_{LR}
 Contradicts CME expectations.

Same-sign back-to-back in central, unexpected from only CME

Data: $\langle A^2 \rangle_{UD} > \langle A^2 \rangle_{LR}$

CME expects: $(A^2)_{UD} > (A^2)_{LR}$

Can a CME signal be observed?

•Relativistic heavy-ion collision is a multi-stage dynamical evolution, then...

Can initial charge separation survive from final strong interactions?

AMPT model introduction

a multi-phase transport model

How to study charge separation by AMPT model

•We include initial charge separation mechanism into AMPT model.

We switch the p_y values of a fraction of the downward moving u quarks with those of the upward moving u-bar quarks, and likewise for d-bar and d quarks.

- We will focus on final interaction effects on the charge separation, including parton cascade, hadronization, resonance decays.
- Resonance decays are implemented to ensure charge conservation.

AMPT results about $<\cos(\phi_{\alpha}+\phi_{\beta})>$

- •For same-charge, 10% initial charge separation can describe data.
- •For opposite-charge, initial charge separation is not necessary for all centralities except 60-70%.
- •For centrality of 60%-70%, 10% initial charge separation can describe both same-charge and opposite charge.

It is challenging to observe an initial charge separation of <5% in the presence of strong final state interactions.

Final state effects on $<\cos(\phi_{\alpha}+\phi_{\beta})>$

- Parton cascade reduces charge separation significantly.
- •Coalescence recovers some charge separation in part because it reduces the number of particles after combining quarks into hadrons.
- Resonance decays reduce charge separation.

From a percentage of charge separation of 10% in the beginning, only 1-2% percentage remains at the end.

Charge separation vs trans. mom. conservation

- AMPT results without initial charge separation are consistent with the expectation of transverse momentum conservation [dashed: $<\cos(\phi_{\alpha}+\phi_{\beta})>=-v_{2}/N$].
- Transverse momentum conservation can partly account for data, therefore initial charge separation or other mechanisms are needed.

$\Delta \eta$ and p_T dependences of $\langle \cos(\phi_{\alpha} + \phi_{\beta}) \rangle$

- AMPT results with initial charge separation can well describe samecharge data.
- •AMPT results without initial charge separation are consistent with the expectation from transverse momentum conservation [dashed: $\cos(\phi_{\alpha} + \phi_{\beta}) > \infty p_{+}^{n} (n=2\sim3)$].

AMPT results about $<\cos(\phi_{\alpha}-\phi_{\beta})>$

- •AMPT gives the same trends as data.
- Initial charge separation is not enough to make up for the large difference between AMPT and data.
- Other mechanisms?

TABLE I. Estimated contributions to azimuthal correlations from various effects and comparison with data. The DATA are from the STAR measurement for AuAu 200-GeV collisions at ~50%–60% centrality.

Bzdak et. al., PRC 83, 014905 (2011)

$\hat{O} \times 10^3$	$\langle\cos(\phi_1+\phi_2)\rangle_{++}$	$\langle\cos(\phi_1+\phi_2)\rangle_{+-}$	$\langle\cos(\phi_1-\phi_2)\rangle_{++}$	$\langle \cos(\phi_1 - \phi_2) \rangle_{+-}$
CME	-(0.1-1)	+(0.01-0.1)	+(0.1-1)	-(0.01-0.1)
LCC	\sim 0	+(0.1-1)	\sim 0	+(1-10)
TMC	\sim -0.1	\sim -0.1	~ -1	~ -1
DATA	-0.45	+0.06	-0.38	+1.97

AMPT results about charge asymmetry correlations (I)

$$\begin{split} A_{+,UD} &= (N_{+,U} - N_{+,D})/(N_{+,U} + N_{+,D}), \\ A_{-,UD} &= (N_{-,U} - N_{-,D})/(N_{-,U} + N_{-,D}), \\ A_{+,LR} &= (N_{+,L} - N_{+,R})/(N_{+,L} + N_{+,R}), \\ A_{-,LR} &= (N_{-,L} - N_{-,R})/(N_{-,L} + N_{-,R}). \\ \delta \langle A_{\pm,UD}^2 \rangle &= \langle A_{\pm,UD}^2 \rangle - \langle A_{\pm,UD,stat+det}^2 \rangle, \\ \delta \langle A_{\pm,LR}^2 \rangle &= \langle A_{\pm,LR}^2 \rangle - \langle A_{\pm,LR,stat+det}^2 \rangle, \end{split}$$

- •For <A+A->, AMPT shows the similar trends as data, but smaller magnitudes.
- ●For <A²> , AMPT gives similar magnitudes for some centralities, but decreasing trends different from data.

AMPT results about charge asymmetry correlations (II)

$$\Delta \langle A^2 \rangle \equiv \delta \langle A_{\pm,UD}^2 \rangle - \delta \langle A_{\pm,LR}^2 \rangle \approx \langle A_{\pm,UD}^2 \rangle - \langle A_{\pm,LR}^2 \rangle,$$

$$\Delta \langle A_+ A_- \rangle \equiv \langle A_+ A_- \rangle_{UD} - \langle A_+ A_- \rangle_{LR},$$

- •For \triangle <A+A-> and \triangle <A²>, AMPT shows the similar trends as data, but can not match the data.
- •Initial charge separations increase Δ <A²> and decrease Δ <A+A->, which is consistent with CME expectations.
- More detail studies are needed to understand the charge asymmetry data.

NEW DATA: two energy directions

$<\cos(\phi_{\alpha}+\phi_{\beta})>$ at low RHIC energies

The percentage of initial charge separation decreases from ~10% for 200 GeV,
~5% for 39 GeV (circles), to ~0% for 11.5 GeV(circles).

Initial charge separation effect decreases with the decreasing of energy.

$\langle \cos(\varphi_{\alpha} + \varphi_{\beta}) \rangle$ for Au+Au 7.7 GeV

• The partonic interaction cross section decreases from ~10mb for 200 GeV, ~3mb for 11.5 GeV, to no partonic but hadronic interactions only for 7.7 GeV.

The partonic degree of freedom decreases with the decreasing of energy.

$<\cos(\phi_{\alpha}\pm\phi_{\beta})>$ at LHC energy

- •For same-charge $<\cos(\phi_{\alpha}+\phi_{\beta})>$, 10% initial charge separation can describe LHC data.
- •For opposite-charge $<\cos(\phi_{\alpha}+\phi_{\beta})>$, initial charge separation is not necessary for all centralities except 60-70% and 70-80%.
- For $\langle \cos(\varphi_{\alpha} \varphi_{\beta}) \rangle$, we only give the experimental trends, fail for the magnitudes.

Initial charge separation at LHC seems similar as that at top RHIC energy.

Outlook

RBRC workshop (https://www.bnl.gov/pcp2012/)

- QM2012 (exp. & theory)
- ...

Summary

- final interactions play an important role, which can reduce the charge separation from 10% in the initial state to 1-2% in the final state.
- The initial charge separation mechanism or other mechanisms are needed in order to describe data for top RHIC energy and LHC energy.
- Charge azimuthal correlation is a helpful observable to learn phase transition for RHIC beam energy scan program.
- However, much more studies are required to understand all of the RHIC and LHC data.